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In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and
discrete Fourier transformation smoothing algorithms (noise reduction) applied toModerate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide contin-
uous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB).
MODIS 16-day 250 m NDVI imagery for the GLB was used in conjunction with National Land Cover Database
(NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classifica-
tion evaluations. Inter-class separability was measured by Jeffries–Matusita (JM) distances between selected
cover type pairs (both general classes and specific crops), and intra-class variability wasmeasured by calculating
simple Euclidean distance for sampleswithin cover types. For theGLB, we found that the application of a smooth-
ing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries–Matusita (JM)
measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested,
only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn–
soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI
data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother
improved performance by approximately 2–6% for some years. Conversely, the asymmetric Gaussian and
double-logistic smoothing algorithms actually led to degradation of classification performance.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Harmful algal blooms (HABs) have been estimated to deteriorate
freshwater supplies at a cost of $2.2 billion annually within the United
States (US). These damages negatively affect ecosystem services includ-
ing recreational water use, water front real estate value, biodiversity,
and drinking water treatment costs (Lopez, Jewett, Dortch, Walton, &
Hudnell, 2008). The rapid spread of cyanobacteria and associated
cyanotoxins that can result from HAB blooms holds particular conse-
quence: cyanotoxins are included in the Safe DrinkingWater Act's Con-
taminant Candidate List and are correlated with the degradation of
potable water, human respiratory irritation, and other human illnesses
resulting from ingestion or skin exposure. The severity of complications
ded and partially conducted the
reviewed by EPA and has been
ficial Agency policy. Mention of
t constitute endorsement or
d in support of the National
Biology and Biogeochemical
which result from HABs warrant the establishment of a regularly
updated cyanobacteria assessment network, which is currently devel-
oped under an interagency effort funded by NASA, USEPA, NOAA, and
USGS (NASA, 2015).

Algal blooms result from a combination of factors including excess
nutrients (Michalak et al., 2013), environmental conditions related to
temperature, light, stratification (Paerl & Huisman, 2008), and changes
in land-cover (LC) and land-use (LU) practices related to urbanization
and modern agricultural processes related to sediment and nutrient
buildup in watersheds (Shao, Lunetta, Macpherson, Luo, & Chen,
2013). A method for determining future trends in cyanobacteria out-
breaks utilizing LCLU data to determine correlations could be valuable.
However, existing reference data may be inadequate due to issues in
temporal resolution. For example, the application of National Land
Cover Database (NLCD) reference data for understanding and monitor-
ing HAB trends is problematic due to the 5–7 year time lapse between
updates. An approach using time-series Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index
(NDVI) data, available in 16-day composites, for LCLU characterization
may augment research capabilities by filling in previous gaps.

Time-series MODIS-NDVI data have been proven to be useful for
cover type characterization (Friedl et al., 2002; Xiao et al., 2006) and
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change detection analysis (Lunetta, Knight, Ediriwickrema, Lyon, &
Worthy, 2006). For LC characterization, monthly NDVI composite
data derived from the Advanced Very High Resolution Radiometer
(AVHRR) sensor have been used as a primary input to generate the
1.0 km resolution global LC database (Loveland et al., 2000). More re-
cently, global and regional mapping efforts have focused on using
time-series NDVI or other vegetation indices from MODIS (Friedl et al.,
2002; Knight, Lunetta, Ediriwickrema, & Khorram, 2006). Compared to
the traditional single image ‘snap-shot’ classification approach, the use
of time-series remote sensing data or multi-temporal image classifica-
tion often improves classification accuracy by incorporating both spec-
tral and temporal profiles (Shao & Lunetta, 2011). Standard global
MODIS-derived LC products (Friedl et al., 2002), however, are provided
at relatively coarse spatial resolution (500 m) and focus on broad/gen-
eral cover types. MODIS time-series data have also been successfully
used for crop-specificmapping inwhich corn and soybean can be delin-
eated by examining NDVI temporal profiles from the crop growing sea-
son (Wardlow, Egbert, & Kastens, 2007; Lunetta, Shao, Ediriwickrema, &
Lyon, 2010). MODIS-based crop-specific mapping has yet to be general-
ized to national scale for operational use.

One of the main challenges in time-series remote sensing data anal-
ysis is dealing with image noise such as pseudo-hikes and pseudo-lows
caused by cloud and shadow issues, weather impacts, and sensor-
introduced noises (Goward, Markham, Dye, Dulaney, & Yang, 1991;
Lunetta et al., 2006). The presence of such outliers may add uncertainty
in LCmapping and change detection efforts, therefore necessitating data
cleaning; the process of filtering and smoothing anomalous time-series
data (Holben, 1986; Lunetta et al., 2006). A large number of data
smoothing algorithms have been developed to reduce noise in remote
sensing time-series data. For AVHRR-NDVI data, Ma and Veroustraete
(2006) developed a smoothing method using a mean-value iteration
filter. Reed (2006) and Swets, Reed, Rowland, and Marko (1999) pro-
vided examples of smoothing using a weighted least-squares approach.
For MODIS-NDVI data, Sakamoto et al. (2005) developed smoothing
methods using wavelet and Fourier transforms. Bruce, Mathur, Byrd,
and John (2006) developed a new wavelet-based feature extraction
technique. Chen et al. (2004) modified the Savitzky–Golay filter to
adapt to the upper envelope of the vegetation index data; an adaptation
especially important because NDVI signals are often negatively biased.
Atzberger and Eilers (2011a) showed that the Whittaker smoother
(WS) can perfectly balance fidelity to the original data and smoothness
of the fitted curve while being easy to implement with fast processing
times (Eilers, 2003). Lunetta et al. (2006) applied inverse Fourier trans-
formation to estimate new NDVI values, while retaining the original
NDVI values for cloud-free and good quality pixels. Additionally,
Jönsson and Eklundh (2002, 2004) integrated Savitzky–Golay, asym-
metric Gaussian, and double-logistic algorithms into a TIMESATpackage
which can be applied for smoothing time-series NDVI data from a vari-
ety of sensors, including AVHRR, MODIS, andMedium Resolution Imag-
ing Spectrometer (MERIS).

Although a variety of algorithms have been examined and im-
plemented for smoothing time-series data, comparisons of the relative
effectiveness of each algorithm is difficult due to lack of in-situ reference
data (Hird & McDermid, 2009) and standard statistical measures
(Atzberger & Eilers, 2011a). Most published studies compare different
smoothing algorithms for how well they derive phenological metrics
such as start of season (SOS) and end of season (EOS) (e.g., Atkinson,
Jeganathan, Dash, & Atzberger, 2012; Beck, Atzberger, Høgda, Johansen,
& Skidmore, 2006, Hird &McDermid, 2009). Little research has been con-
ducted for the purpose of multi-temporal image classification. In a recent
paper, Atzberger and Eilers (2011a) proposed possible measures for
evaluating the effectiveness of smoothing algorithms including both
increased inter-class separability, and reduced within-class variability
of pseudo-invariant targets. For example, Jeffries–Matusita distance
measures can be used to estimate inter-class separability, and Euclidean
distance measures can be used to estimate within-class variability.
Atzberger and Eilers (2011a), however, did not conduct actual compari-
son of different smoothing algorithms because the main purpose of
their paperwas to highlight potential evaluationmethods. Fewpublished
studies have evaluated how different data smoothing algorithms affect
actual classification performance using accuracy statistics such as overall
accuracy, kappa statistics, and class-specific accuracy.

The main objective of this study was to compare five smoothing
algorithms for multi-temporal land cover mapping applications in the
Laurentian Great Lakes Basin (GLB) region (US portion). The five algo-
rithms chosen were the Savitzky–Golay algorithm, the asymmetric
Gaussian model, the double-logistic model, the Whittaker smoother,
and a Fourier transform approach. The first three algorithms have been
widely used for remote sensing time-series data analysis (Jönsson &
Eklundh, 2002, 2004). The Whittaker smoother has been successfully
used by Atzberger and Eilers (2011a, 2011b) to improve overall quality
of time-series NDVI data and the signal-to-noise ratio. Previous reported
LC classification and change detection efforts have demonstrated high po-
tential of the Fourier transformation approach (Lunetta et al., 2006; Shao,
Lunetta, Ediriwickrema, & Iiames, 2010). Our study objectives were to:
(i) evaluate within-class variability for dominant LC types across the
study region; (ii) quantify inter-class separability for cover type pairs;
and (iii) determine how smoothing algorithms actually affect image clas-
sification performance. Evaluations incorporated error matrices, overall
accuracy, and kappa statistics (Congalton, 1991). Both general cover
types (e.g., deciduous forest, cropland and wetland) and crop-specific
(e.g., corn and soybean) cover types were considered. We hypothesized
that optimizing multi-temporal MODIS smoothing algorithm perfor-
mance would result in better classification results for the GLB region,
thus provide a better understanding of LU and LC change.

1.1. Study area

The US GLB contains the entire state of Michigan, portions of seven
other states and Canadian Province of Ontario (not analyzed) (Fig. 1).
TheGLB is an important region inNorth America fromboth an economic
and ecological standpoint. The ecosystem supported by the GLB features
a range of habitats: forests, grasslands, and prairies, as well as dunes,
marshes, and wetlands along the lakeshores. Lakes Superior, Michigan,
Huron, Ontario, and Erie together make up the largest total surface
area of freshwater on Earth, providing drinking water for over 40 mil-
lion people as well as 56 billion gallons of water each day for industrial,
municipal, and agricultural use. Almost a third of the area of the GLB is
devoted to farmland, producing approximately 7% of the US and 25%
of the Canadian total crop yield, respectively.

2. Methods

MODIS MOD13Q1 Terra vegetation index data from 2001 to 2014
were obtained from NASA Reverb website (http://reverb.echo.nasa.
gov/) for the GLB. The MOD13Q1 product includes 250 m resolution
NDVI and Enhanced Vegetation Index (EVI) data, and quality assess-
ment (QA) information for both. MOD13Q1 data is calculated from
atmospherically-corrected surface reflectance values and delivered as
a 16-day composite image. For each composite period, the initial data
consisted of four separate MODIS scenes to cover the large study area.

The NLCD data for years 2001, 2006 and 2011 were acquired from
the Multi-Resolution Land Characteristics Consortium (http://www.
mrlc.gov/). All NLCD datasets (30 m) were developed with Landsat
data as the primary input to derive a 16-class LC classification scheme,
using a decision-tree model to support the classification. The overall ac-
curacy of NLCD 2001 classes (Anderson Level I) was assessed to be
around 85% (Wickham, Stehman, Fry, Smith, & Homer, 2010). The accu-
racy of NLCD 2011 is currently being assessed.

To provide crop-specific validation reference data, we obtained the
CDL data from CropScape (http://nassgeodata.gmu.edu/CropScape/),
developed by the United States Department of Agriculture National
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http://reverb.echo.nasa.gov
http://www.mrlc.gov
http://www.mrlc.gov
http://nassgeodata.gmu.edu/CropScape/


Fig. 1. Laurentian Great Lake Basin study area was limited to the US portion of the basin.
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Agricultural Statistics Service (USDA-NASS). Complete coverage for the
US is available from 2008 to 2014. The spatial resolution of the CDL
varies from 30 to 56 m, depending on the imagery source (Boryan,
Yang, Mueller, & Craig, 2011). Specific crop types including as corn, soy-
bean, and wheat were mapped at an annual interval, with classification
accuracies exceeding 80% for corn and soybean in most states. We ob-
tained CDLs from 2011 to 2014, since all four years' data have consistent
30 m spatial resolution.

2.1. Data pre-processing and smoothing

The MODIS Reprojection Tool (MRT) was used to generate NDVI
mosaics spanning the four MODIS scenes for each 16-day composite.
The resultant mosaics were re-projected to an Albers Equal Area Conic
(AEA) projection. Each set of reference/supplemental data (NLCD
2001, NLCD 2006, NLCD 2011, and CDL 2011–2014) also had the same
AEA projection. For the NLCD data, each LC type of interest was extract-
ed at the nominal 30m resolution, then degraded to provide cover type
proportions within 250 m MODIS-NDVI grids. A threshold value of 50%
proportional cover was used to identify pixels with at least one
dominant cover type within the MODIS grid. The same procedure was
applied to CDLs for 2011–2014 to derive corn and soybean pixels. For
CDLs, we focused on corn and soybean because these two summer
crops have a similar crop calendar, thus they are difficult to classify
even with multi-temporal MODIS data (Shao et al., 2010). Creating
this diverse library of reference data allowed us to evaluate each
smoothing algorithm for image classification performance, for both gen-
eral and specific cover types, for multiple study years.

We implemented three smoothing algorithms through the TIMESAT
software package including the: adaptive Savitzky–Golay, asymmetric
Gaussian, and double-logistic function (Jönsson & Eklundh, 2002).
The Savitzky–Golay approach applies a moving window to a given
time-series dataset. Within a moving window (e.g., 2n + 1 points, n is
a user defined window width), a quadratic polynomial function is
used to fit all points and then the value of the central point is replaced
by the fitted value. The adaptive Savitzky–Golay approach considers
that noises from cloud/cloud shadow typically reduce the original
NDVI value. Thus, the weight for each point can be re-assigned to
favor points located above the initial polynomial fit. A new quadratic
polynomial function can then be applied to derive NDVI values adapted
to the upper envelope of the time-series data.

The asymmetric Gaussian algorithm relies mainly on five parame-
ters to fit time-series data including the time of the minimum or maxi-
mum NDVI, the width and flatness of the right side of the function, and
thewidth and flatness of the left side of the function. The double logistic
function estimates four parameters to determine the left inflection
point, the right inflection point, and rates of changes at two inflection
points. Both the asymmetric Gaussian algorithm and the double logistic
function are modifications of local model functions, which have been
proven to be effective in capturing phenological cycle events defined
by NDVI curves (Atkinson et al., 2012).

We first used TIMESAT in the MATLAB environment and visually
compared raw NDVI data and smoothed curves. The MODIS Relia-
bility Index (RI) was used to identify pixels with quality issues
(e.g., RI N 1). Such pixels were assigned with weight of zero, thus
not affecting the subsequent smoothing. TIMESAT also incorporates
an automated data pre-processing step to remove additional spikes
and outliers within the time-series data. For example, if NDVI value
is substantially different from the median value of a pre-defined
temporal window (e.g., seven data points), it is considered as a
spike/outlier before data smoothing. We also adjusted additional
TIMESAT parameters such as envelope iterations and adaptation
strength to fine-tune the upper envelope fitting. The final configura-
tions were saved as TIMESAT setting files that allow automated data
smoothing for a large MODIS-NDVI dataset. TheWhittaker smoother
was also implemented in MATLAB and relied on the smoothing
parameter (λ) to control (larger the smoother) the NDVI temporal
profile smoothness (Eilers, 2003; Atzberger & Eilers, 2011a,
2011b). Similar to Atzberger and Eilers (2011a), we used an auto-
mated pixel-by-pixel cross-validation (good quality NDVI values
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only) approach to search the best smoothing parameter and gener-
ate the final smoothed NDVI temporal profiles.

For the Fourier transformation approach, pixels with quality issues
(e.g., RI N 1)were first removed from the time-series. Based on previous
work (Lunetta et al., 2006), NDVI values show sudden decrease or
increase (±15%) and then return to the previous value were also con-
sidered as noises andwere removed from the time-series. Fourier trans-
formation was then applied to the filtered NDVI stack to separate the
signal and noise (Lunetta et al., 2006; Roberts, Lehár, & Dreher, 1987).
Specifically, the 14 year NDVI temporal profiles were transformed into
frequency domain using a discrete Fourier transformation and the
power spectrum was then used to separate signal and noise. For each
pixel in the frequency domain, power density value above a pre-
defined threshold (i.e., 2× mean density value) was considered as sig-
nal. Thresholds were empirically determined using the 4–6 harmonic
series to represent NDVI profiles. The harmonic series number was mini-
mized to avoid the overfitting or spurious oscillations, a commonproblem
when high order Fourier series is used (Hermance, 2007). A nonlinear
deconvolution method was then used to estimate new NDVI values for
the removed NDVI data points. For our Fourier transformation approach,
we note that the original NDVI values for cloud-free and good quality
pixels remain unchanged in the NDVI time-series stack.

The data volume for all of the above time-series smoothing ap-
proaches was large due to the expansive geographic coverage of our
study area and study period (14-years) examined. With this data vol-
ume, the application of the smoothing algorithms is computationally-
intensive. Therefore, we used the Virginia Tech Advanced Research
Computing's ITHACA cluster for the image analysis. The initial time-
series data set was divided into 10 smaller study regions in order to
take advantage of the parallel processing offered by ITHACA. The resul-
tant sets of smoothed files were then merged into a single time series
file providing full datasets of the region.

2.2. Within-class data variability analysis

For a given cover type (e.g., deciduous forest), we expected to see
relatively similar NDVI temporal profiles. A simple Euclidean distance
measure can be used to characterize the similarity of two randomly se-
lected pixels in the spectral–temporal domain:

d p;qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 pi � qið Þ2
q

ð1Þ

where pi is NDVI value at time i for p location and qi is NDVI value at
time i for q location. The pair-wise Euclidean distance can be grouped
together if more randomly selected pixels are involved in the analysis.
The mean and standard deviation of such Euclidean distance measures
were then used as a criteria to compare the similarity of NDVI temporal
profiles from raw (i.e., unsmoothed), adaptive Savitzky–Golay, asym-
metric Gaussian, double-logistic function, Whittaker smoother, and
Fourier transformation-derived NDVI products. Our hypothesis is that
the smoothing algorithmproviding the lowestmean and standard devi-
ation Euclidean distance measurement is likely to be the most reliable
option for the study area.

We focused on four main LC types: deciduous forest, cultivated
crops, hay/pasture, and wetlands. According to NLCD 2011, these four
cover types account for 24.5%, 22.9%, 9.2%, and 14.2% of total land area
in the GLB. Using NLCD 2001, 2006, and 2011 as reference datasets,
we first identified no-change (or pseudo-invariant) reference pixels
from 2001 to 2011 for deciduous forest, cultivated crops, hay/pasture,
and wetlands, respectively. Within the no-change area, we randomly
selected 5000MODIS pixels for each cover type, per study year. Selected
pixels (n = 5000) represented approximately 0.8% of overall sample
(~630,000). Edge-pixels were avoided due to potential spectral mixture
problem. From these randomly selected pixels, we calculated pair-wise
Euclidean distance and derived mean and standard deviation of
distance measure for each smoothing algorithm. The random sampling
and distance calculation procedures were repeated for 10 times to re-
duce potential sampling uncertainties. Then for each study year, the dis-
tance statistics were compared for different smoothing algorithms. In
addition to the above four general cover types, we evaluated within-
class variability for crop-specific classes including corn and soybean.
Corn and soybean were the two dominant crop types in the GLB and
previous studies have shown that these two crop types often have sim-
ilar NDVI temporal profiles, thus, they are not easy to delineate (Shao
et al., 2010; Wardlow et al., 2007). We used CDL data from years 2011
to 2014 to derive reference data, corresponding MODIS NDVI temporal
profiles from various smoothing algorithms were analyzed and com-
pared using Euclidean distance measures.

2.3. Cover type inter-class separability

Inter-class separability was evaluated using the Jeffries–Matusita
(JM) distancemeasure. The JM distance has beenwidely used in remote
sensing to measure the average distance between two class density
functions (Richards & Jia, 2006; Wardlow et al., 2007). JM distance
expresses separability between two classes where the lower-bound
(0) indicates identical and impossible to separate two classes, and the
upper-bound (1.41) represents that two classes can be perfectly separat-
ed. Similar to the above within-class variability analysis, we derived JM
measures for both general land cover types and crop-specific types. The
four cover types in the GLB would lead to six possible LC pairs for JM
measures: deciduous forest-cultivated crops, deciduous forest–wetlands,
deciduous forest–hay/pasture, cultivated crops–wetlands, cultivated
crops–hay/pasture, and wetlands–hay/pasture. JM measurements were
computed for 2001, 2006, and 2011, respectively. For each year, we con-
ducted principal component analysis (PCA) to the NDVI temporal profiles
to reduce the linear dependence of time-series data. The first 10 PCA
components (approximately 80% variance) were used for JM distance
calculation.

2.4. Performance evaluations

We further assessed image classification performance using various
smoothed NDVI temporal profiles as image classification input datasets.
For general LC classification, we continued with the four main cover
types of deciduous forest, cultivated crops, pasture/hay, and wetlands.
All other cover types were masked out using NLCD data as references.
For each general cover type, we randomly selected 5000 MODIS pixels
for image classification training and the remaining MODIS pixels were
used for accuracy assessment. The training and accuracy assessments
were conducted for raw NDVI profiles (RAW), the Savitzky–Golay
smoothed profiles (SG), asymmetric Gaussian profiles (GA), double-
logistic profiles (DL), Whittaker smoother profiles (WS), and discrete
Fourier transformation profiles (FT), independent to each other. A
maximum likelihood classifier was used for the image classification
task since its performance is closely linked to JM distance measures
(Richards & Jia, 2006). Error matrix, overall accuracy, and kappa statis-
tics (Congalton, 1991) were generated and compared for NDVI input
datasets corresponding to years 2001, 2006, and 2011. Similar image
classification and accuracy assessments were conducted for corn–soy-
bean separation using CDLs from years 2011 to 2014 as reference data.

3. Results

3.1. Within-class variability

Fig. 2 compares NDVI temporal profiles from five smoothing algo-
rithms and the original NDVI data for an example data point. NDVI tem-
poral profiles derived from SG, GA, DL, and WS algorithms were clearly
much smoother compared to the original data. NDVI values appeared to
be adapted to the upper envelope of the time-series data. The FT



Fig. 2. Visual comparison of smoothing algorithm effects: (a) original NDVI value (RAW),
the Savitzky–Golay (SG), asymmetric Gaussian (SG), and double-logistic (DL); (b) original
NDVI value (RAW), Whittaker smoother (WS), and Fourier transformation method (FT).
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algorithm, on the other hand, kept most original NDVI values and esti-
mated new values only for outliers and points with data quality issues,
thus it is less aggressive in terms of data smoothing and maintains sub-
tle profile features that are potentially lost with the other algorithms
tested.

Fig. 3 compares Euclidean distancemeasures for four selected gener-
al LC types for the years of 2001, 2006, and 2011. For all LC types, the
smoothing algorithms reduced the mean Euclidean distance compared
to the raw data. For example, for the wetland class of 2001, the mean
Euclidean distance measures reduced from 0.849 to 0.637, 0.671,
0.706, 0.675, and 0.690 for SG, GA, DL, WS, and FT algorithms, respec-
tively. Among the five smoothing algorithms, SG algorithm generated
the smallest mean Euclidean distance measures for most cover types
in years of 2001 and 2006. The FT filter led to the largest distance mea-
sures for all cover types in years 2006 and 2011. This result was expect-
ed because our FT method only estimated new values for NDVI outliers
and pixels with quality issues. The resultant Euclidean distance mea-
sures thus would be more similar to those derived from raw NDVI
data. The standard deviations of Euclidean distance measures (Fig. 3d–
f) suggested that GA and DL had more scattered Euclidean distance
measures compared to the other three smoothing algorithms.

For crop-specific classes (i.e., corn and soybean), we observed
similar trends that all five smoothing algorithms reduced the mean
Euclidean distance compared to the raw NDVI profiles and the WS and
FT smoothers led to relatively larger Euclidean distance measures for
Fig. 3. Within-class distance measures (mean and standard deviation) for selected NLCD (200
forest. Pixels were randomly sampled from each class and the results were averaged from 10 s
all four study years from 2011 to 2014 (Fig. 4). Among the remaining
three smoothers, the relatively ranks were inconsistent. For example,
the SG smoother generated the smallest Euclidean distance measures
for both corn and soybean classes in 2012. For 2013, DL smoother per-
formed best although the differences among SG, GA, and DL smoothers
were quite small. The standard deviations of Euclidean distance mea-
sures show that GA and DL hadmore scattered Euclidean distancemea-
sures, especially when compared to the WS and FT algorithms.

3.2. JM distance

JM distance measures for six general LC pairs were compared in
Table 1. For the raw NDVI temporal profiles, the pair of cultivated
crops and hay/pasture had the lowest JM distance (0.577 in 2001,
0.760 in 2006, and 0.390 in 2011), suggesting low separability between
these two classes. Their separability increased substantially after all five
different data smoothing algorithms. Results for other LC pairs were
more complicated because we observed both increases and decreases
of JM distancemeasures comparing rawNDVI and smoothingNDVI pro-
files. Among the five smoothing algorithms, the WS and FT performed
best because they generated higher JM distance measures in most LC
pairs compared to the rawNDVI data. For 2006, the SG algorithmgener-
ated higher JM distance measures for all six LC pairs compared to the
raw NDVI data. However, it only outperformed raw data in one LC pair
(cultivated crops–hay/pasture) in 2011. Additionally, the GA and the
DL filter performed similarly, and both generated relatively low JM dis-
tances for Hay–Wetland LC pair.

Crop-specific JM measurements were compared in Table 2. Consid-
ering all study years from 2011 to 2014, only theWS and FT algorithms
had consistently higher JM measurements compared to raw data.
Results for other smoothing algorithms showed both increases and de-
creases of JM distance measures comparing raw NDVI. After evaluating
all LC datasets for JM distance, it was determined that in both general LC
and crop-specific analyses, the WS and FT algorithms out-performed
the other smoothing algorithms in terms of class separability.

3.3. Multi-temporal classifications

Table 3 compares general classification performance using different
MODIS input data. For year 2001, the overall classification accuracy was
71% (kappa= 0.60) using original NDVI data as input. The overall accu-
racy slightly increased to 73% for the SG, WS, and FT algorithms. The FT
algorithm also slightly outperformed the raw data for 2006 image clas-
sification, however, the differences in overall accuracy were less than or
equal to one percent and not likely meaningful in practice. We also
1, 2006, and 2011) cover classes: wetlands, hay/pasture, cultivated crops, and deciduous
ampling trials.



Fig. 4. Within-class distance measures (mean and standard deviation) for corn and soybean pixels (2011–2014). Pixels were randomly sampled from each class and the results were
averaged from 10 sampling trials.
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noted that the GA and DL algorithms resulted in a poorer classification
performance when compared to the raw NDVI data. Using the GA
smoothed NDVI, the overall accuracy was 67% for year 2001 classifica-
tion, about 4% less than the overall accuracy of raw NDVI data. Such
findings suggested that users should apply caution in selecting smooth-
ing algorithms. Among the five selected smoothing algorithms, the FT,
WS, and SG algorithms performed much better compared to the GA
and DL algorithms.

Table 4 shows errormatrices for 2001 classification results using raw
NDVI data and FT-derived data as inputs. With raw NDVI data, decidu-
ous forest and cultivated crops had relatively high classification accura-
cy of 80.9% and 89.1%, respectively. However, the hay/pasture class had
very low user's accuracy of 38.4%. There was significant confusion be-
tween hay/pasture and cultivated crops. Wetland class had relatively
low accuracy (65.6%) and errors could be attributed to confusion
between wetland and deciduous forest. Using the FT filtered data, the
classification accuracies for hay/pasture classes increased about 4.2%.
The confusion betweenwetland and deciduous forest was also reduced.
The FT performance (kappa =0.63) was determined to be statistically
Table 1
Comparison of JM distance for general LC class pairs using different multi-temporal NDVI
inputs including deciduous forest (FO), crops (CR), hay and pasture (HA), and wetlands
(WE). Pixels were randomly sampled from each class and the results were averaged from
10 sampling trials.

FO–CR FO–HA FO–WE CR–HA CR–WE HA–WE

2001
Raw 1.324 1.244 0.787 0.577 1.310 1.226
SG 1.304 1.157 0.802 0.939 1.274 1.090
GA 1.316 1.131 0.784 1.065 1.286 0.961
DL 1.307 1.128 0.801 1.081 1.281 0.981
WS 1.300 1.166 0.815 0.892 1.292 1.141
FT 1.317 1.250 0.808 0.918 1.292 1.137

2006
Raw 1.290 1.131 0.698 0.760 1.267 1.035
SG 1.316 1.171 0.770 0.802 1.305 1.131
GA 1.328 1.206 0.802 0.924 1.310 1.081
DL 1.323 1.199 0.824 0.910 1.302 1.069
WS 1.337 1.220 0.756 0.770 1.336 1.212
FT 1.317 1.192 0.757 0.806 1.307 1.148

2011
Raw 1.317 1.206 0.743 0.390 1.309 1.201
SG 1.301 1.170 0.733 0.824 1.281 1.141
GA 1.311 1.180 0.785 0.867 1.285 1.093
DL 1.300 1.169 0.803 0.852 1.271 1.071
WS 1.322 1.216 0.740 0.711 1.319 1.209
FT 1.333 1.233 0.762 0.656 1.318 1.219
significant (p = 0.05) compared to RAW (kappa =0.60) based on the
Z-statistic results (Z-score = 25.2).

For corn/soybean classification, the SG, WS, and FT smoothed NDVI
data again outperformed raw NDVI input for most study years
(Table 5). For year 2013, the overall classification accuracy was 65%
(kappa = 0.30) using original NDVI data as input. The overall accuracy
slightly increased to 71% and 70% for the WS and FT algorithm, respec-
tively. Similar to the general LC classification, the GA and DL smoothed
data led to decreased overall accuracy compared to raw NDVI data for
almost all study years.

4. Discussion

There aremany factors and criteria involved in ourMODISNDVI data
smoothing analysis. The algorithms chosen for comparison were from
TIMESAT package, a Whittaker smoother, and a FT method developed
by the USEPA, but our comparing methods may be applied to any
smoothing algorithms for multi-temporal imagery datasets. The results
of within-class variability using Euclidean distance as ameasure provid-
ed evidence that in the GLB, smoothing can reduce mean Euclidean
distances of NDVI profiles when dealing with both general LC types
and crop-specific classes such as corn and soybean. This information, al-
though it does not reveal actual improvement in terms of classification
accuracy statistics, does show that pre-processing can potentially im-
prove ‘cleanness’ of NDVI time-series data. Themean Euclidean distance
measure alone should not be used as the only criterion in selecting
smoothing algorithms. In this study, the FT algorithm generated the
highest mean Euclidean distances among five selected algorithms,
but it actually led to much better classification accuracies, especially
compared to the GA and DL approaches. The standard deviations of
Euclidean distancemeasures appeared to be better associatedwith clas-
sification performances.
Table 2
Comparison of JM distance for corn/soybean separability using different multi-temporal
NDVI inputs. Pixelswere randomly sampled fromeach class and the resultswere averaged
from 10 sampling trials.

2011 2012 2013 2014

RAW 0.738 0.711 0.502 0.708
SG 0.726 0.657 0.757 0.858
GA 0.784 0.718 0.604 0.656
DL 0.777 0.640 0.598 0.635
WS 0.981 0.919 0.693 0.865
FT 1.030 0.789 0.738 0.790



Table 3
Accuracy assessment statistics including percent correct and (kappa statistic) for general
LC classification using different MODIS raw and smoothed input data.

RAW SG GA DL WS FT

2001 71 (0.60) 73 (0.63) 67 (0.55) 67 (0.55) 73 (0.62) 73 (0.63)
2006 70 (0.59) 70 (0.59) 67 (0.55) 68 (0.56) 70 (0.59) 71 (0.60)
2011 69 (0.58) 69 (0.59) 66 (0.53) 67 (0.54) 70 (0.59) 71 (0.59)

Table 5
Accuracy assessment statistics percent correct and (kappa statistic) of crop-specific (corn
and soybean) classification using different MODIS input data for raw data vs. smoothed
products over four consecutive years.

2011 2012 2013 2014

RAW 73% (0.45) 72% (0.44) 65% (0.30) 74% (0.47)
SG 75% (0.50) 74% (0.47) 69% (0.39) 73% (0.46)
GA 70% (0.41) 68% (0.32) 66% (0.31) 69% (0.38)
DL 69% (0.38) 63% (0.27) 63% (0.28) 70% (0.39)
WS 77% (0.53) 74% (0.47) 71% (0.41) 74% (0.48)
FT 75% (0.50) 73% (0.47) 70% (0.40) 74% (0.48)
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JM distances have been proven to beuseful for analyzing separability
of one LC class from another. Atzberger and Eilers (2011a) found im-
proved separability for almost all LC pairs by using aWhittaker smooth-
er. In our study, the WS and FT algorithms appeared to be effective in
improving class separability. The impacts of class separability from the
remaining three smoothing algorithms, however, were inconclusive. A
given smoothing algorithm may improve class separability of one spe-
cific class pair (e.g., cultivated crops vs. hay/pasture), while decrease
separability of another class pair. Such class separability tradeoff
makes comparison or selection of smoothing algorithm difficult. One
smoothing algorithm should be favored (e.g., WS and FT algorithms
here) only if amajority of class pairs showed improved class separability
comparing to the raw NDVI dataset. We also note that we used PCA to
reduce the linear dependence of time-series data before computing JM
distances. For the original NDVI and smoothed data especially, there
were strong linear dependences among the temporal NDVI signals
(e.g., r = 0.94 for DOY 177 and DOY 193 in the 2001 NDVI GA-
smoothed data). This linear dependency may lead to questionable
JMmeasures. For example, using untransformed data, very high sep-
arability measures (JM N 1.30) might be generated for the class pairs
corresponding to deciduous forest–wetland and crops–hay/pasture.
However, the LC pairs are actually difficult to separate. Future research
should be implemented to assess the use of JM distances, Euclidean dis-
tance, and other possible criteria for evaluating smoothing algorithms
by allowing researchers to determine if there are positive relationships
between thosemeasures to classification accuracy statistics. One potential
criterion is the signal-to-noise ratio (SNR) before and after data
smoothing. Through a geostatistical analysis, Atzberger and Eilers
(2011b) observed an improved SNR after data smoothing. This
method could be expanded to compare performances from multiple
smoothing algorithms.

We used MODIS RIs as the primary data source to identify pixels
with questionable NDVI values. However, MODIS RIs have their own re-
liability issue — good NDVI observations may be masked out while
questionable observations may be kept in the time-series. Thus inaccu-
rate RIs may negatively affect smoothing results. Tan et al. (2011)
Table 4
Error matrices for time-series MODIS classification were generated using reference data derived
the accuracy assessment. Results from RAWNDVI data and FT filtered datawere compared. LC c
wetlands (WE).

Reference

RAW FO CR HA
FO 149,689 2673 2457
CR 5949 171,594 11,037
HA 21,775 55,247 55,826
WE 32,337 3136 1884
Total 209,750 232,650 71,204
% correct 71.4 73.8 78.4

FT FO CR HA

FO 160,776 6897 4777
CR 4629 170,268 10,075
HA 12,972 49,905 52,755
WE 31,373 5580 3597
Total 209,750 232,650 71,204
% correct 76.7 73.2 74.1

The diagonal elements (boldfaced) represent number of correctly classified pixels.
integrated MODIS surface reflectance QA information and land surface
temperature products to define winter season and improved their
NDVI smoothing performance. This procedure needs to be further ex-
amined for our multi-temporal LC classification research. The accuracy
of LC reference data (e.g., NLCD and CDLs) is another important factor
that may affect training data quality and classification performance
evaluation. Both the NLCDs and CDLs used in this study had relatively
high classification accuracy (e.g., overall accuracy N 85%), and their ac-
curacy levels may be further increased when pixels are spatially-
aggregated to coarser spatial resolutions.

One important finding from our study is that certain smoothing
algorithms may actually reduce image classification performance for
general LC and particularly crop-specific classification. For example,
the overall accuracy of 2012 corn–soybean classification was 63%
using DL filtered data compared to 72% accuracy using raw NDVI data.
One possible reason is that aggressive smoothing process actually re-
moved important temporal information and two LC classes may appear
to be similar after the processing. Our FT data smoothing approach and
the Whittaker smoother, on the other hand, have the advantage of
maintaining ‘good’ original NDVI data (Lunetta et al., 2006; Atzberger
& Eilers, 2011a). Note that our FT approach included one filtering step
where new NDVI values were estimated for poor quality pixels while
good quality pixels remain unchanged (the other four algorithms
smoothed the entire time-series). Additionally, we further examined
the other four other algorithms classification performance by including
the same filtering step for corn–soybean classifications. Overall accura-
cies for SG algorithm improved to 76% and 70% for year 2011 and 2013,
respectively (slightly outperforming the FT approach). There was no im-
provement for WS algorithm and it remained to be the best performer
among five selected algorithms. The overall accuracies for GA and DL
approaches improved for certain years (e.g., GA = 69% and DL = 68%
for 2013), but they still ranked worse than other three algorithms.
Among five selected algorithms, WS algorithm has another appealing
from the NLCD 2001. Approximately 20% of theMODIS pixels were randomly selected for
lasses included deciduous forest (FO), corn/soybean crops (CR), hay and pasture (HA), and

WE Total % correct
30,321 185,140 80.9
3939 192,519 89.1

12,394 145,242 38.4
71,168 108,525 65.6

117,822 631,426
60.4 Overall = 71% kappa = 0.60

WE Total % correct

28,288 200,738 80.1
3001 187,973 90.6
8198 123,830 42.6

78,335 118,885 65.9
117,822

66.5 Overall = 73% kappa = 0.63
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feature is that the smoothing parameter (λ) can be automatic adjusted
using cross-validation of good quality NDVI data points (Eilers, 2003).

5. Conclusions

Wedesigned this analysis to evaluate how smoothing algorithms for
NDVI time-series data compare to one another, to increase the under-
standing of algorithm selection for pre-processing and potentially to
improve the accuracy of multi-temporal LC classification efforts. We
examined 14-years of MODIS NDVI data in the GLB using a variety of
smoothing algorithms and LC reference datasets and used criteria to
test which smoothing algorithms performed best for multi-temporal
LC classifications. All smoothed data returned significantly reduced
mean Euclidean distance measurements. TheWS and FT algorithms, al-
though generated the larger mean Euclidean distances, showed higher
JM inter-class separability measure. Using different smoothed NDVI
multi-temporal data as image classification inputs, we then compared
accuracy statistics. Overall, the WS smoothing algorithm performed
best and improved classification accuracy about 2% for general LC and
about 6% for crop-specific classification for certain study years; which
was statistically significant (p= 0.05). The GA and DL algorithms actu-
ally decreased classification performance compared to the use of raw
NDVI data, suggesting the importance of pre-processing steps in the
multi-temporal image classification.
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